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We examine a simple hard-disk fluid with no long-range interactions on the two-dimensional space of
constant negative Gaussian curvature, the hyperbolic plane. This geometry provides a natural mechanism by
which global crystalline order is frustrated, allowing us to construct a tractable, one-parameter model of
disordered monodisperse hard disks. We extend free-area theory and the virial expansion to this regime,
deriving the equation of state for the system, and compare its predictions with simulations near an isostatic
packing in the curved space. Additionally, we investigate packing and dynamics on triply periodic, negatively
curved surfaces with an eye toward real biological and polymeric systems.
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I. INTRODUCTION

The true nature of glasses and the glass transition has long
remained inscrutable. Glasses belong to a wide class of dis-
ordered materials and systems which include granular mate-
rials like sand �1� or wheat grains �2�, frustrated systems like
spin glasses �3�, and soft systems like foams �4� and emul-
sions �5�. Unfortunately, the analogies afforded by this clas-
sification have done little to lift the veil of mystery: from
misunderstandings about apparent “flow” displayed by
stained glass windows from the middle ages �6� to debate
over the meaning of randomness �7�, few aspects of the prob-
lem have escaped some measure of controversy. The promi-
nent role of geometrical frustration in these systems, how-
ever, has long been agreed upon �8�, and it is here that we
turn our attention.

We consider an idealized colloidal glass, made of mono-
disperse spheres in three dimensions with no long-range in-
teractions and a purely hard-core, short-range potential. The
entropically favored, high-density fcc lattice �there is a vir-
tual tie between fcc and hcp lattices and lattices with the
stacking faults that relate them� for the system is well under-
stood and highly stable, but nevertheless, the system can
exhibit a glass transition to a dynamically arrested, amor-
phous state at a packing fraction significantly lower than that
of the crystal. One way to understand this is to recognize that
there is a competition at play between local and global prop-
erties of the spheres’ arrangements. On the one hand, the best
the colloids can hope to do, entropically speaking, is to ar-
range themselves into one of the close-packed, global crystal
configurations. On the other hand, these crystal configura-
tions are not the best local arrangements—a tetrahedral pack-
ing is locally preferable, but cannot be maintained beyond
small distances without the introduction of defects.

In spite of this qualitative understanding of the impor-
tance of geometrical frustration, the full colloidal glass sys-
tem remains difficult to tame, particularly near the transition
�9�. In principle, one could imagine constructing a simpler
system that shares enough of the qualities of the colloidal
glass that a full analysis yields insights into the more com-
plicated case. A time-honored tradition along these lines is
the study of the same system in fewer dimensions �10�. In

this case, we would have monodisperse, hard disks with no
long-range interaction. Notice, however, that we have lost
geometrical frustration. The entropically-favored, global,
hexagonal crystal is composed precisely of the locally opti-
mal units, triangular configurations of disks. Indeed, two-
dimensional, monodisperse disks do not exhibit a glass tran-
sition �9�.

How, then, can we use a simplified system to say anything
about the genuine article? We must find a way to modify the
two-dimensional case so as to recover some measure of geo-
metrical frustration. One method that has been well studied
is the use of bi- or polydisperse disks �9�, frequently with
disk radii in a ratio of 1.4:1. The use of two or more disk
sizes successfully reintroduces geometrical frustration and
recovers the glass transition. Unfortunately, this method of
turning on a glass transition in two dimensions is less than
ideal. Phase transitions into locally monodisperse, crystalline
regions are a constant worry along with the complications
inherent to the explicit introduction of additional particle
types. Even more troubling, however, is the nature of the
parameter space for the system: polydispersity among the
particles begets a functional parameter, the size-distribution
function. Since there is not even a restriction on the continu-
ity of this function, the parameter space is extraordinarily
large, making a systematic exploration hopelessly untenable.

So, is there a way we can keep the two-dimensional sys-
tem monodisperse and yet still manage to frustrate the local
and global packings, all while suppressing the size of the
relevant parameter space? Indeed, in the seminal work of
Kléman and Sadoc �8� and Nelson �11�, background curva-
ture is introduced to the system, achieving the desired frus-
tration. Even better, if we require that the system be isotropic
and homogeneous, this background curvature must be uni-
form, leaving us with a simple, one-dimensional parameter
space to explore. To picture how curvature may be used to
frustrate the system, imagine that our two-dimensional space
is a sphere and that the hard disks are embedded in it as
spherical caps. Notice that there is no longer enough room
around each spherical cap to fit six additional caps, as there
would be in flat space. More precisely, the number of disks
�or spheres or hyperspheres� that can simultaneously touch a
central one, the kissing number nkiss, varies continuously as a
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function of the curvature K. In two dimensions, this relation-
ship is given by �12�

nkiss =
2�

cos−1� cosh�2�−Kr�
1+cosh�2�−Kr� �

, �1�

where r is the radius of the disks in question. In order for
local triangular packings of disks to be commensurate with
the best global packing, nkiss must be an integer. This condi-
tion is satisfied only for flat space �K=0→nkiss=6� and for
isolated nonvanishing curvatures.

Historically, curved backgrounds in this context have
been used to study crystalline states on curved surfaces
�11,12�, and the ordered defect patterns that emerge as a
result, or to imagine the ideal, unfrustrated, ordered configu-
rations in three dimensions with the hope of understanding
how “decurving” might lead to the physical, disordered
states we observe in glassy systems in the manner of the
cholesteric blue phase �8,13�. In contrast to these approaches,
we choose to study the disordered fluid regime of hard-core
systems in uniform curvature. Positive curvature may, at first
thought, seem more suitable due to its intuitive appeal and
the fact that a sphere may be embedded in three-dimensional
Euclidean space �R3� without distortion. However, since the
surface area of the sphere is finite and smaller particles on
the sphere’s surface probe ever lower curvatures �see the
Appendix�, there is no way to extract a sensible thermody-
namic limit at a given curvature.

Instead, we turn to the space of constant negative curva-
ture, the hyperbolic plane H2, where the thermodynamic
limit is not impossible, but remains subtle nonetheless. While
the sphere suffers from not having enough room for a ther-
modynamic limit, on H2 there may actually be too much
room. To see why this might be so, consider a circle of radius
r on H2. Its area is A�r�=−2�K−1�cosh��−Kr�−1���r2

− �
12Kr4 for small r, consistent with the known K=0 result.

Meanwhile, the circle’s circumference is C�r�
=2� sinh��−Kr� /�−K, which grows as fast as A�r�. Thus,
the area within an arbitrary distance of the boundary of a
circle, or any other fixed shape, is always a finite fraction of
the entire region’s area, no matter how large the region be-
comes. Since the traditional thermodynamic limit depends on
the effect of the boundary vanishing at infinite size, we must
tread carefully. Because our system has interactions that are
purely local, the ideal gas provides a useful test case for
managing the issue.

The textbook approach to the ideal gas law begins with
particle-in-a-box eigenenergies and takes the large-area limit
to calculate the partition function for a single particle, Z1
=V / ��T�d where �T=�2��2 / �mkBT� is the thermal wave-
length. We might expect that the partition function, even on a
curved manifold, would be proportional to the proper hyper-
volume of the box. Indeed, since any partition sum is domi-
nated by the infinite number of high-energy, short-
wavelength terms, one would think that these modes are
insensitive to the curvature as soon as their de Broglie wave-
length is shorter than the radius of curvature. For concrete-
ness, let us consider the partition function for an ideal gas on
a hemisphere where the wave functions are forced to vanish

on the equator; the energies are the eigenvalues of the La-
placian on the hemisphere with Dirichlet boundary condi-
tions. On the whole sphere, the spherical harmonics Y�m���
are the complete set of eigenfunctions with eigenvalue ���
+1�. The eigenfunctions on the hemisphere will be a subset
of the spherical harmonics, with the boundary condition en-
forcing the constraint that �+ �m� be odd. Therefore, the par-
tition function will be

Z1 = �
�=1

�

� exp	−
�2��� + 1�
2mkBTR2 
 = �

�=1

�

� exp	−
�T

2��� + 1�
4�R2 
 ,

�2�

where R is the radius of the sphere. We can re-express this
partition function as an expansion in �T /R by employing the
Euler-Maclaurin formula �14�

�
n=i

j

f�n���
i

j

f�x�dx +
f�i� + f�j�

2

+ �
k=1

�
b2k

�2k�!
�f �2k−1��j� − f �2k−1��i�� , �3�

where b2k are the even Bernoulli numbers. Substituting
f�n�=n exp��T

2n�n+1� /4�R2�, i=0, and j=� gives the de-
sired expansion

Z1 =
2�R2

�T
2 −

�R

2�T
+

1

6
+ O��T/R� . �4�

Notice that we get terms proportional to both the area and the
perimeter, but also a constant piece that one may speculate is
related to the topology of the manifold. Similarly, we could
consider the partition function with Neumann boundary con-
ditions along the equator—i.e., vanishing derivative. In this
case the constraint is that �+ �m� be even and the appropriate
sum to consider is

Z1 = �
l=1

�

�� + 1�exp	−
�2��� + 1�

2mTR2 

=

2�R2

�T
2 +

�R

2�T
+

1

6
+ O��T/R� . �5�

Again we see an area and perimeter term, the latter with the
opposite sign, and the same constant piece.

To probe more exotic surfaces, one could attempt this
kind of calculation on a case-by-case basis, but fortunately,
the spectrum of the Laplacian on a general Riemann surface
is well characterized. Originally, Weyl studied the asymptotic
behavior of the large eigenvalues �15�. Kac, in asking, “Can
one hear the shape of a drum?” �16�, found our constant 1

6
and, finally, McKean and Singer �17� developed the “Weyl
expansion” for the partition function of a single particle on a
two-dimensional domain D:
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Z1�T� =
1

�T
2�

D

dA �
1

4�T
�

�D

d� +
1

12�
�

D

K dA

+
1

12�
�

�D

	gd� + O��T� , �6�

where the sign of the first correction depends on Neumann
�+� or Dirichlet �−� boundary conditions and 	g is the geo-
desic curvature of the boundary considered relative to its
outward-directed normal. Our calculations are, unsurpris-
ingly, in complete agreement with their theorem, which, in-
terestingly, works in any dimension. Returning to the ques-
tion at hand—namely, the hyperbolic plane—we can see that
the circumference directly enters the partition function at un-
comfortably low order. What is to be done? Periodic bound-
ary conditions provide an out—by eliminating the bound-
aries and considering sufficiently large periodic boxes we
may recover some semblance of a thermodynamic limit. We
hasten to point out that even this procedure is not free of its
own subtleties—due to the inherent length scale provided by
the curvature �Appendix�, a simple rescaling of the periodic
box is not allowed. In particular, by symmetry, the edges of
the periodic box must have vanishing curvature. Thus the
Gauss-Bonnet theorem, which relates the background curva-
ture K, the geodesic curvature 	g, and the jump angles at any
vertices, 
i,

� �
T

K dA = 2� − �
i


i−�
�T

	gds , �7�

imposes a relation between the area contained within the box
and the polygon’s angles. At the same time, to preserve ho-
mogeneity after the periodic boundaries have been applied,
any identified vertices must end up with 2� of angular space
around them, thus fixing the box’s area. The simplest topo-
logical considerations force the number of sides to be a mul-
tiple of 4 �18�, and we are left with the familiar square cell in
flat space, along with a specific-size octagon, dodecagon, and
so forth on H2. Luckily, the area of these p-gons increases
with p �18�, and we are reassured that sufficiently large pe-
riodic boxes are achievable.

Recently, we took the first several steps in a comprehen-
sive treatment of just such a system of hard disks on H2 �19�.
Our examination included a study of ordered disk packings
leading to the application of free-area theory, a calculation of
the first several virial coefficients of the system, and a mo-
lecular dynamics realization of the fluid in the smallest pos-
sible periodic region. In this paper, we extend and detail
these results by considering a constant-curvature recasting of
the free-area theory and calculating the virial coefficients to
higher precision while applying Padé approximants to get a
qualitative look at the behavior of the divergence in � as a
function of the curvature. We expand our simulation to a
larger polygon with more sides, allowing for better statistics
through more simulated disks, and use it to probe the zero-
curvature limit from below. In addition, we study entropi-
cally governed packings on surfaces with average negative
curvature in R3, such as the triply periodic minimal surfaces
found in diblock copolymers, lipids, or even the mitochon-

dria of Chaos carolinensis �20�, among other biological ex-
amples.

This paper is organized as follows. In Sec. II, we review
the theory of regular tesselations in two dimensions of arbi-
trary curvature and extend this theory to packings of hard
disks with crystalline order. Section III develops a free-area
theory from these ordered packings on curved space. In Sec.
IV, we calculate the first five terms in the virial expansion as
a function of curvature and comment on the analogy between
high-dimensional flat space and the highly curved plane.
Section V presents a molecular dynamics model of a hard-
disk fluid on H2 and compares the simulation results with the
predictions of free-area theory and the virial expansion de-
veloped in earlier sections. In Sec. VI, we consider a hard-
disk system constrained to reside on a negatively curved tri-
ply periodic surface such as those found in the cell or among
diblock copolymers. We summarize our results in Sec. VII.

II. TILINGS AND DISK PACKINGS

We begin our study of the hyperbolic plane, and curved
space in general, with a discussion of the classical problem
of tiling a plane with regular patterns. Regarding the hyper-
bolic plane in particular, we outline the features of our cho-
sen model, the Poincaré disk model, in the Appendix.

The problem of understanding the possible coverings of a
flat plane with uniform tiles is deceptive in its simplicity, and
the different shapes the tiles may take or patterns they may
be adorned with have long been pondered. In the last 100
years or so it has become known that there are precisely 17
ways of covering a flat plane with these tiles, corresponding
to the 17 so-called wallpaper symmetry groups �21�. The
Alhambra, in Granada, Spain, for example, is famous for its
artistic representations of all 17 possible tilings �22�.

A. Tesselating two-dimensional spaces

If we restrict ourselves to covering the plane with only
unadorned polygons, as one would consider in a Voronoi
tesselation, however, we reduce the number of possible til-
ings considerably. Furthermore, since crystalline order is a
necessary starting point, we also restrict our tiles to regular
polygons. We then begin with a regular lattice of Voronoi
cells and consider a tesselation of F p-gons, with q meeting
at each vertex. We allow for the possibility that F may be
either finite, corresponding to a compact object, or infinite,
corresponding to the Euclidean or hyperbolic plane. Each
p-gon has p vertices, but each vertex is shared by q equiva-
lent p-gons. Thus the total number of vertices is then pF /q.
Likewise, each edge is shared by two p-gons and so the total
number of edges is pF /2. The total number of faces is F. The
Euler character � of the surface constrains these three num-
bers and it follows that

� = V − E + F = pF1

q
+

1

p
−

1

2
� . �8�

For the flat periodic plane �the torus� �=0, so p−1+q−1

=1 /2 and we find the three tilings represented by the Schläfli
symbol �p ,q�= �6,3�, �3,6�, and �4,4�, hexagons, triangles,
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and squares, respectively. The spherical topology is the only
one with positive � �=2�, admitting the five Platonic solids
�p ,q�= �3,3�, �3,4�, �3,5�, �4,3�, and �5,3�: the tetrahedron,
octahedron, icosahedron, cube, and dodecahedron, respec-
tively. Finally, we turn to the pertinent geometries with nega-
tive Gaussian curvature, for which �0 and p−1+q−1

1
2 . In

this case there are an infinite number of integral pairs �p ,q�
and an infinite number of corresponding regular
tesselations—for example, �4,5� �Fig. 1�. As in the tilings of
the Euclidean plane, the �p ,q� tesselation is dual to the �q , p�
tessellation—the vertices of one become the face centers of
the other. However, this does not mean that their packing
properties are the same, just as the packing of disks on the
centers of hexagons is much more efficient than packing
them on the centers of triangles.

B. Building ordered disk packings

We use these tesselations to produce close-packed,
crystalline-ordered arrangements of disks simply by inscrib-
ing circles into their constituent regular polygons. Note that
this procedure results in the familiar hexagonal crystal when
applied to the �6,3� tesselation of flat space. In general, those
packings produced from tesselations with q=3 will result in
the most efficient, densest crystals, as q=3 corresponds to
local triangular close packing around each vertex. The rigid-
ity or stability of a packing is another feature of interest that
may be inferred from the parameters of the packing. In par-
ticular, a configuration is considered to be isostatic �23� if

there are exactly enough contacts to balance the degrees of
freedom in the system; that is, the system is at the threshold
of stability. In an N-particle packing in d dimensions there
are dN degrees of freedom and 1

2 z̄N contacts, where z̄ is the
average number of contacts per particle, so the condition for
isostaticity is z̄=2d. Therefore, for an arrangement to be
stable we must have p�4, with isostaticity at p=4. Note that
isostaticity is a topological issue and is independent of the
curvature of the surface. We note that because we are forced
to use periodic surfaces to achieve a thermodynamic limit,
the usual isostatic counting should be revisited in a global
context and is the subject of continuing work.

A central property of these crystalline arrangements is
their area fraction, as it indicates which packings are favored
entropically near a given curvature. We find the area fraction
of the �p ,q� packing through application of the Gauss-
Bonnet theorem and hyperbolic trigonometry. When there
are F identical polygons, the area of each can be found from
the Euler character �:

Ap-gon =
� dA

F
=

−� K dA

KF
=

− 2��

KF
. �9�

The radius of the in circle can be determined via the dual law
of hyperbolic cosines �24�, cosh��−Kr�
=cos�� /q� /sin�� / p� �Fig. 1�. The area fraction for the
�p ,q�-packing is thus

π
p

π
q

FIG. 1. �Color online� A �4,5�
tiling of a segment of the hyper-
bolic plane, represented in the
Poincaré disk model, with in-
scribed disks. Despite the appar-
ent differences, the disks are of
uniform size and the tiles are all
equivalent regular polygons. The
red triangle displayed in the cen-
tral cell is used to calculate �.
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��p,q� =

cos��/q�
sin��/p� − 1

p� 1
2 − 1

q − 1
p� . �10�

We recover the appropriate packing fractions � /3�3, � /4,
and � /2�3 for the Euclidean tilings �3,6�, �4,4�, and �6,3�,
respectively. As p→� for close-packed q=3 tesselations, we
find �=0.9549, the known packing fraction of the best pack-
ing on the hyperbolic plane at any curvature �25�. The lowest
packing fraction for an isostatic configuration �p=4� is
��4,��=�2−1�0.4142, an area fraction far below that for the
Euclidean square lattice, � /4�0.785. Also of note is the
broadening of the range in � that supports stable configura-
tions, from �0.13 in two-dimensional flat space to �0.54 on
H2.

III. FREE-AREA THEORY IN A UNIFORMLY CURVED
BACKGROUND

Now that we have explicitly constructed close-packed
disk configurations with crystalline order, we have a foothold
on the analysis of a thermodynamic fluid of hard disks resid-
ing in a curved space. Kirkwood’s free-volume theory �26� is
highly successful at modeling the equation of state for tradi-
tional crystals, particularly near their close-packed, maxi-
mum density �27,28�. Somewhat surprisingly, free-volume
theory remains successful at lower densities as well; as such,
it provides a useful tool for probing a thermodynamic sys-
tem, so long as the high-density, high-correlation behavior is
known.

Before we apply free-volume theory to our curved sys-
tem, recall that in flat space the shapes of the Voronoi cell
and the free-volume cell are equivalent and, thus, only the
scaling of the free-volume cell is important to the equation of
state. This scaling is dependent only on dimension, and we
find a simple expression for the equation of state �29�:

PFV = −
kBT�2

v

d

d�
ln����max/��1/D − 1�D� . �11�

Unfortunately, an analogously simple treatment does not ex-
ist in the presence of a curved background. The curvature
itself, inducing geodesics to converge �positive K� or diverge
�negative K�, breaks the scale invariance enjoyed by all
shapes on Rn, and hence destroys the similarity relation be-
tween the Voronoi cell and the free-volume cell.

A. Idealized circular free-area cell

As an alternative, we consider an idealized case in which
the symmetry of the system itself ensures that similarity is
restored. If, for example, we have a two-dimensional fluid
composed of hard disks and we posit that the free-area cells
are also circular, then we may proceed in direct analogy with
Euclidean space. The free area is simply the area of a disk
whose radius is the difference between that of the Voronoi
cell and that of the particle, Afree=− 2�

K �cosh��−K�rcell
−rdisk��−1�. The angle addition formula for the hyperbolic
trigonometric functions, along with the recognition that � is
the ratio of Adisk to Acell, allows us to write

Afree = −
2�

K
� 1

�
�cosh��− Kr� + � − 1�cosh��− Kr�

−
1

�
��cosh��− Kr� − 1��cosh��− Kr� + 2� − 1�

�sinh��− Kr� − 1� . �12�

Notice that we recover the expected Euclidean result of
�r2�1 /�1/2−1�2 as we take K→0. Furthermore, since, in
general,

PFA = −
kBT�2

a

d

d�
ln�Afree� , �13�

we find that the pressure diverges as a simple pole as �
→1. Notice, however, that as we increase the background
curvature the divergence at �=1 becomes sharper, apparent
at ever higher area fractions �see Fig. 2�, indicating a lower
system pressure than is seen in a corresponding flat-space
system. This suggests that both particle collisions and more
complicated, many-particle arrangements become increas-
ingly scarce as the curvature rises.

B. Free area for tesselation-derived packings

What if we were to consider a nonidealized system based
on the ordered packings discussed in Sec. II, with polygonal
Voronoi cells? In order to cope with the shape distortions
caused by the background curvature, we divide the Voronoi
cell into individual regions, as depicted in Fig. 3, and calcu-
late the areas of the strip and corner regions separately, im-
plying Afree=AVoronoi− pAstrip− pAcorner. Without loss of gener-
ality we may set K=−1 since it is only the product of the
disk size and �−K which enter into all our expressions. We
can access different curvatures by changing the size of the
disks. Direct application of the Gauss-Bonnet theorem yields
AVoronoi= p�−2�−2p� /q. In order to find the other two ar-
eas, we first need s, �, and 
. By considering the triangle
formed by the Voronoi cell’s center and two adjacent vertices

0.65 0.7 0.75 0.8 0.85 0.9

1

2

3

4

5

P

φ

K = 0
K = -1
K = -2

K = -4

K = -8

K = -16

FIG. 2. �Color online� The equation of state for free-volume
theory in a disk-shaped Voronoi cell. The top, green curve is for flat
space; subsequent curves are at increasing negative curvature.
Warmer colors correspond to more curvature.
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we may apply the dual hyperbolic law of cosines �Appendix
A 2� to find

s = cosh−1 cos� 2�
p � + cos2��

q �
sin2��

q � � . �14�

To proceed we construct two identical triangles out of the
corner 4-gon by bisecting 
. The dual hyperbolic law of
cosines applied to the side of length r then gives


 = sin−1 cos��
q �

cosh�r�
� . �15�

Armed with an expression for 
, applying the hyperbolic law
of cosines again, this time to the side of length � yields

� = cosh−1�cosh2�r� − cos2��
q �

cosh�r�sin��
q � � . �16�

Now Astrip must be the area within a given distance �namely,
r� of a geodesic of length s−2�. This area is �s−2��sinh�r�
�see Appendix, Sec. 3�. Given 
, direct application of the
Gauss-Bonnet theorem gives Acorner. Finally, we may elimi-
nate r through �:

r = cosh−1 p�

2
−

p�

q
− � + 1� . �17�

Collecting terms and setting �=1− ��
F and �pq=1−

���p,q�

F
=cos�� /q� /sin�� / p�, we have

Afree = 2p sin−1cos��

q
� �pq

�
� − 2�

− 2p��2 − 1 cosh−1 cos��
p �

sin��
q � �

+ 2p��2 − 1 cosh−1�1 −
�pq

2

�2 sin2��
p �

sin��
q � � . �18�

As a check of the complex algebra, note that as �→��p,q�,
�→��p,q� and Afree→0. Likewise, as �→0, �→1 and

Afree � 2p��

2
−

�

q
� − 2� = − 2�p�/F = AVoronoi. �19�

Unfortunately, away from these limits, this expression is dif-
ficult to analyze, so we instead turn to Fig. 4, where we plot
the free-area equations of state for various �p ,q� tesselations
using Eq. �13�

It is important to note that by fixing the lattice of Voronoi
cells we are forced to change the packing fraction by chang-
ing the disk size. Since this is equivalent to changing the
curvature, our free-area equation of state samples different
curvatures at different area fractions �. If we wish to apply
this free-area theory to a system of constant disk size to
sample a constant background curvature, we must allow the
Voronoi scaffolding to vary continuously. We will have to
consider tesselations with nonintegral p and q; we can inter-
pret these as the average number of edges per polygon and
the average number of polygons meeting at a corner in a
tesselation made of a variety of polygons. This is in the spirit
of recent work on average polyhedra �30� which have a non-
integral number of sides. To maintain the curvature as we
vary �, we might fix p or q adjusting the other so as to keep
r fixed in �17�. We might also hold p /q fixed and set p to
maintain r. The freedom afforded by choosing one’s path
through p-q parameter space is troubling—there seems to be
no a priori way for one such path to be chosen over another,
and we are forced to wonder how the behavior of the system
is determined. Fortunately, upon considering specific cases,
the problem disappears, as the fixed-radius equation of state
displays insensitivity to this choice �Fig. 5�, particularly near
high density, indicating that perhaps there is a hidden,
unaccounted-for symmetry among the isotropic Voronoi
scaffoldings. We only find path dependence for very large
values of q and p—there are no real solutions for p when q
is large until we get close to the divergence in the pressure,

strip co
rne
r

free
area
cell

r
r

Voronoi cell

α
s-2

s

2π
q

δ

δ δ

FIG. 3. Partition of a �p ,q� Voronoi cell into its free-area cell, p
corners, and p strips. Note that the boundaries of the free-area cell
are not geodesics.
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FIG. 4. �Color online� The equation of state for free-area theory
for a range of �p ,q� tesselations. Note that the pressure curves di-
verge at their maximum packing fractions and that they differ even
at low volume fractions �. The vertical dashed lines indicate the
maximum volume fraction for the tesselations listed on top of the
figure. The �light blue� circles are the result of our molecular dy-
namics simulation for curvature just below the �4,5� tesselation, and
the �black� crosses are for curvature just above �4,5�. The number of
particles ranges from 1 to 9.
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though there the divergence is insensitive to the details again.

IV. VIRIAL EXPANSION TO THE EQUATION OF
STATE

Thus far, by considering the extension of free-area theory
to uniformly curved spaces we have been working in the
high-density regime, since free-area theory is the first-order
term in an expansion about a close-packed state. On the other
hand, we are also interested in the system’s behavior when it
is much more sparse. The expansion about low densities pro-
vided by the virial expansion to the equation of state �31� is
suitable in this regime, although the connection between the
two regimes is still not well understood in hard-core systems
�32�. In contrast to free-area theory, the virial expansion’s
validity is dependent on the ability to take a proper thermo-
dynamic limit. We therefore resort to the periodic spaces
discussed earlier as our solution to this difficulty.

We note, however, that for hard disks, the virial expansion
only includes local interactions among clusters of particles.
Fortunately, as long as the local clusters under consideration
do not wrap around the periodic space and self-interact, we
may ignore the topology introduced by our usage of a peri-
odic space and perform the cluster integrals on H2. In order
to ensure that this is possible, we may continue to increase
the area available to a cluster by constructing ever higher-
genus manifolds �18�. Furthermore, for manifolds with con-
stant K0, Z1=A��T

−2+K / �12����0 when �T
2 −12� /K. In

other words, there is an ample range of K in which to work
where the curvature of the manifold does not probe the quan-
tum regime of the gas. Hence, the pressure P
=NkBTd ln Z /dA is independent of the proportionality con-
stant.

Just as in the last section, we take advantage of the lack of
scale invariance on H2 to probe higher curvatures not by
changing the ambient space, but simply by considering larger
and larger disks. We consider disks of radius r�−K. Without
loss of generality we again fix the Gaussian curvature to be
K=−1. Dimensional analysis may always be employed to
insert the appropriate factors of K. As in flat space, the sec-
ond Virial coefficient B2�r� is given by half the excluded area
of a single disk. To see that this is true, recall that, in general,
B2�r� is given by

B2�r� = −
1

2V
� � f12d

2r1d2r2, �20�

where f12 is the Mayer function and the position integrals for
both particle 1 and particle 2 are carried out over all space.
Since H2 is isotropic and homogeneous, we may integrate
out one particle position and pick up a factor of V. The
remaining integration is over the separation between the
disks. Meanwhile, the Mayer function for hard disks in the
Poincaré disk model is

f ij = �− 1, if cosh−11 + 2
x2

1 − x2�  2r ,

0, otherwise,
� �21�

as long as one of the disks is at the origin. The expression
when both disks are away from the origin is more compli-
cated, but follows from �A4�. However, for the purposes of
B2�r�, we can always put one disk at the origin. Turning the
step function into a condition on the bounds of the integral
over x, inserting the metric from the Poincaré disk model
�see the Appendix�, and integrating out the angular part re-
sults in the following expression for B2�r�:

B2�r� = 4��
0

��cosh�2r�−1�/�cosh�2r�+1�
dx

x

�1 − x2�2 . �22�

Notice that this is precisely the circularly-symmetric, hyper-
bolic, area integral needed to calculate the area of a disk of
radius 2r on H2, and indeed, carrying out the integration
leaves us with B2�r�=��cosh�2r�−1�, which is half the ex-
cluded area of a single disk, the classic result from the virial
expansion. Further note that as r→0 and B2�2�r2, we re-
cover the d=2 Euclidean result B2�r�= �4��d/2rd /�� d

2 �d.
We may carry out a similar procedure to calculate higher

coefficients. The general relation for B3�r� is

B3�r� = −
1

3V
� � � f12f23f13d

2r1d2r2d2r3, �23�

and we may still integrate out one of the disk positions.
Unfortunately, regardless of which disk we set to the origin,
we are now guaranteed to retain a Mayer function where
neither of the disks whose interaction it represents have had
their position integrated out. This means that we are forced
to contend with an integral of the form
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FIG. 5. �Color online� Fixed-radius equations of state with a
sampling of �p ,q� tesselations as their divergent end points. The
solid blue curves are for fixed q, and the dashed red curves are for
fixed p. Note that in almost all cases these curves lie directly on top
of one another. The inset displays the parameter space for the pack-
ing parameters �p ,q�. The thick red line �center� is the allowed
combinations of p and q in flat space and the purple line beneath it
a representative example from positively curved space. The blue
curve above gives the allowed combinations for H2 with r=0.53.
The �4,5� packing is identified and the paths through parameter
space taken by holding either p or q constant are shown.

GEOMETRICAL FRUSTRATION IN TWO DIMENSIONS: … PHYSICAL REVIEW E 77, 041125 �2008�

041125-7



B3 = −
32�

3
�

0

b

dx1�
0

2�

d�12�
0

b

dx2

� x1

�1 − x1
2�2

x2

�1 − x2
2�2 f12�x1,x2,�12�� , �24�

where b is the same upper limit as in Eq. �22� and the re-
maining Mayer function is written in terms of the coordinate
distance of the two particles from the origin and the angle
between them:

f12 = �− 1, 1 + 2
x1

2 + x2
2 − 2x1x2 cos �12

�1 − xi
2��1 − xj

2� �  cosh�2r� ,

0, otherwise.
�

In order to evaluate this integral, and similar ones that appear
in the higher virial coefficients, we turn to numerical Monte
Carlo techniques. In addition, as is traditional in flat space
�33�, the higher coefficients Bn are reported in units of an−1

= �A�r��n−1 to suppress size effects and generate the expan-
sion for P / ��kBT� in the area fraction, �=�a:

P = �kBT1 + �
n=2

�
Bn

an−1�n−1� . �25�

We have checked the r→0 limit in all cases and find agree-
ment with the known Euclidean results. We plot B2 /a, B3 /a2,
B4 /a3, and B5 /a4 in Fig. 6 as functions of r. To the accuracy
of our calculation, over the range of curvatures considered,
B3, B4, and B5 all remain positive. There is evidence that, in
higher-dimensional flat spaces, the virial coefficients alter-
nate in sign �33,34� and, hence, the leading singularity that
controls the radius of convergence of the expansion sits on
the negative real axis �34�. The location of this singularity,
and thus the range of applicability of the virial expansion
itself, remains an open question in D=2,3. Though not con-

clusive, our results here suggest that the introduction of cur-
vature does not qualitatively change the behavior or location
of the leading singularity in the expansion.

Padé approximants and the radius of convergence

The quantitative behavior of the virial expansion’s diver-
gence as a function of the curvature, on the other hand, may
be extracted from the coefficients that we have calculated, at
least as a trend. To this end we have approximated the virial
series by ratios of rational functions, the Padé approximants.
We find the coefficients of two polynomials am��� and bn���,
of degree m and n, respectively so that

P = kBT�� + �
j=2

5

Bj�
j� =

am���
bn���

. �26�

The left-hand side of �26� is fifth order, and so there are, in
principle, six arbitrary coefficients. As a result, we can only
study the Padé approximants with n+m�5. We look for the
divergences in these approximants to estimate where the
virial expansion diverges—an estimate of the ultimate pack-
ing fraction if the virial expansion converges for all physical
�. Our results are shown in Table I. Notice that, for the Padé
approximants with only one pole �that is, of the form �m ,1��,
there is a clear trend toward divergence at lower � as the
curvature increases. Furthermore, it is worth pointing out
that among these approximants, the one that is the most sen-
sitive, the �3,1�, also agrees best with the putative location of
the divergence of the fluid branch in flat space, at around
��0.84, as r goes to zero.

V. MOLECULAR DYNAMICS ON THE HYPERBOLIC
PLANE

Equipped with these theoretical models for the system,
particularly in the high- and low-density regimes, we turn to
the full-blown hard-disk fluid. We choose to employ
constant-energy molecular dynamics. There is some subtlety
in handling the boundaries of the simulation region: recall
that the area near the edge of a shape scales at the same rate
of the area of the entire shape on H2. This means that the
effect of hard boundaries cannot be minimized by consider-
ing larger regions. We thus choose to implement periodic
boundary conditions, although there is subtlety here as well.
Because of the scale dependence of the hyperbolic plane and
the topological requirements of the periodic region, we are
restricted to choosing for our simulation region the unit cell
from tesselations of the form �4n ,4n� for n an integer greater
than 1. This ensures both that the sides of the polygon may
be identified in a systematic way to produce an orientable
manifold and that, upon identification, there is not a conical
singularity at the vertices of the polygon �so there are exactly
2� radians of space around each vertex�.

We have chosen not to use the event-driven molecular
dynamics traditional for pure hard-core systems, as project-
ing the next collision is extremely time intensive when the
equations of motion are nontrivial as they are in a curved
background. Instead, we evolve the system by time steps,
checking for and resolving collisions as they occur. The col-
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FIG. 6. �Color online� The second, third, fourth, and fifth virial
coefficients in appropriate units of the area a as functions of disk
size �for K=−1� r. The zero-size limit matches the flat-space coef-
ficients. B2 is exact, and error bars are indicated for all other coef-
ficients. These errors are given by the estimated variance of the
mean of the integrand and, for large �, scale like �−1/2, where � is
the number of Monte Carlo trials.
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lisions themselves require some care as well. The center-of-
mass frame in a curved space is not necessarily inertial, even
if the constituent particles are all following geodesics—
imagine a sphere with a particle moving around the equator
and another sitting motionless on the North pole—the center
of mass follows the 45th parallel, which is not a geodesic. As
a result, the textbook techniques and formulas for handling
collisions do not apply. As an alternative, we decompose
each particle’s velocity into the component along the geode-
sic connecting the particle centers at contact and the compo-
nent normal to this geodesic. Note that these directions will
differ between the two colliding particles due to the com-
plexity of parallel transport on H2. In order to resolve the
collision, the components of velocity along the contact geo-
desic are swapped and the other components remain un-
changed. Hence, collisions are guaranteed to conserve en-
ergy and momentum.

To calculate the equation of state from our simulation, we
employ the collisional virial expression for the pressure �35�:

P =
1

A�NkT +
1

2�
�

collisions
d��p�� , �27�

where A is the area of the simulation region, � is the time
over which collisions are summed, d is the disk diameter,
and �p is the momentum transferred from one particle to
another during the collision. Finally, we remind the reader
that to fill out the equation of state with different values of �
it is necessary to change the number of particles simulated,
N, as varying the disk size means changing the effective
curvature.

A. Systems near the {4,5} tesselation

We probe curvatures r=0.53 and r=0.531, just below and
just above that for the �4,5� tesselation, r�4,5�=0.5306. At
these curvatures no regular tesselation is allowed, and so
noncrystalline arrangements give the best packings �36�.

Thus we expect to probe disordered configurations even at
high densities with this choice. At lower densities, however,
the gas will still be sensitive to the �4,5� tesselation and
should follow the free-area theory prediction for the �4,5�,
failing only at higher area fractions. In particular, we expect
that the system’s pressure should be lower than that of the
isostatic crystal for higher � and diverge at larger �. This is
precisely the case in three dimensions where the liquid
branch is lower in pressure than the free-volume crystalline
pressure at low volume fractions. Indeed, these expectations
are borne out by the data �Fig. 4�.

Due to the fact that we have used a low number of par-
ticles in this regime, probing the spatial distributions of the
particles is impractical. However, further future work will
allow for the investigation of the pair correlation function. In
particular, the effects of curvature on the split second peak
�37� present in the flat two-dimensional system are of poten-
tial interest.

B. Approaching flat space from below: Monodispersity and
disorder

In addition to investigating the system at packing frac-
tions close to an isostatic crystal, we might use a limiting
procedure to take the background curvature to zero. By look-
ing at the fluid in low curvatures, we expect to gain some
insight into hard disks in flat space. In particular, looking at
curvatures near, but not at, zero guarantees that we will avoid
crystallization, as no crystal packings are available in this
curvature range. It is therefore possible that we may generate
disordered, monodisperse configurations that can be carried
into flat space with low probability of introducing overlaps
or defects. Unfortunately, due to the broken scale invariance
on H2, a very large number of simulated disks is needed to
probe this regime, making the simulation numerically unten-
able, even for the high-speed digital computers of our day.

TABLE I. The leading divergences on the real axis in � at various values of curvature and for different
Padé approximants about the origin. Empty entries indicate that all poles for that approximant are located off
the real axis. Though � has physical meaning only in the range �0,1�, a divergence at an unphysical value of
� may still be meaningful, if, for example, it encodes information about the radius of convergence of the
virial expansion.

�R�m,n�
�

�m ,n� r→0 r=0.5 r=1.0 r=1.5 r=2.0

�0,4� −3.444 4.335 — — —

�1,3� 2.720 −0.592 −8.695 0.797 0.650

�2,2� — — — 0.798 0.695

�3,1� 0.798 0.797 0.794 0.770 0.676

�0,3� −5.145 −45.09 0.634 0.409 0.258

�1,2� — — 0.888 0.821 0.829

�2,1� 0.735 0.733 0.732 0.730 0.737

�0,2� 0.737 — — — —

�1,1� 0.639 0.637 0.630 0.620 0.611

�0,1� 0.500 0.470 0.393 0.298 0.210
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VI. PACKING AND DYNAMICS ON NEGATIVELY
CURVED SURFACES IN FLAT SPACE

Thus far, we have used uniform, negative, background
curvature as a way of constructing an idealized model in two
dimensions for a more complicated three-dimensional sys-
tem. Owing to the fact that no surface with uniform, negative
curvature can be isometrically embedded into R3; however,
this model is unphysical. But are there examples of real sys-
tems that are qualitatively close, for which the predictions of
our model may be brought to bear directly? Triply periodic
minimal surfaces, with their numerous physically advanta-
geous properties �38�, their prevalence in smectic liquid crys-
tals, diblock copolymers, and even biology, and their status
as infinite surfaces with negative curvature everywhere, are
ideal for analysis with insights from the abstract hyperbolic
plane. Further, recent work on the creation of toroidal
bubbles whose interface is packed with colloids �39� indi-
cates that the experimental creation of an ideal two-
dimensional packing environment with negative curvature is
within reach.

In lieu of a direct molecular dynamics simulation, as done
on H2, we instead take advantage of the numerical insight
provided by examining allowed and disallowed configura-
tions �40�. In fact, we may obtain the pressure simply by
randomly sampling particle configurations at a given density
and determining the fraction that violate the no-overlap con-
dition of the hard-core potential. If the probability of not
finding an allowed state at density �+��, given an allowed
state at �, is J�����, then the following relation holds �40�:

J��� =
V

�kBT
�P��� − �T/v� , �28�

where v is the area per disk, V the system volume, and T the
temperature.

Hence, this approach gives us the equation of state. We
have traded the numerical difficulty of dynamics of particles
constrained to a complicated surface with the algorithmic
difficulty of finding a way to generate points at random on an
arbitrary surface such that the distribution is flat with respect
to the local area.

A. Randomly distributed points on an arbitrary surface

We have employed a novel geometric algorithm for se-
lecting points from an arbitrary surface randomly with even
distribution in the area �as long as it is either compact or
periodic in each dimension�. Knowledge of the metric is not
required, only a set of parametric equations that define the
surface in R3. The algorithm works as follows. First, one
repeat unit of the surface in whichever directions are peri-
odic, and the entire surface in those directions for which the
surface is compact, are considered to be inside a box. At this
stage it is necessary to determine the maximum number of
times a straight line can intersect this region of the surface—
say, Imax—this can typically be done analytically, though for
a very complicated surface numerics may prove more effi-
cient. The box is inscribed in a sphere, and a great disk is
chosen at random in this sphere. Next, a point is chosen at

random on this great disk and the line normal to the great
disk is drawn through it. Finally, we determine the intersec-
tions of this line with the surface and randomly select one
from among them. To ensure that the resulting distribution of
points is flat with respect to area, it is necessary to begin the
entire process anew if the line fails to intersect the surface.
Furthermore, if the number of intersections is less than Imax,
then an appropriate number of placeholders must be included
when randomly selecting an intersection point. If a place-
holder is selected, then the entire procedure is repeated. If an
actual intersection point is selected, then that point is the
output of the pass through the algorithm.

To prove that this procedure yields a distribution flat with
respect to the local area, consider the shadow cast by the
surface when light from an arbitrary direction strikes it. Now
consider the contribution to this shadow from a differential
piece of the surface. The area of the part of the shadow cast
by this small patch will be directly proportional to the like-
lihood of selecting a point from it when the great disk chosen
at random is normal to the direction of light, P�dA�
�dA�cos����, where � is the angle between the patch’s sur-
face normal and the light rays. But the algorithm specifies
that we constantly choose, at random, new directions for the
illumination. This has the effect of averaging over all incom-
ing directions for the light, � and �, and removes the depen-
dence on the angle, leaving the likelihood of selecting a point
from any given patch of surface directly proportional to only
the area of the patch. To see this, imagine a particular great
disk parametrized by x and y. The surface has a shadow on
the disk of area Ashadow. Ignoring, for the moment, multiple
leaves, we may parametrize the surface in terms of x and y so
that the probability of selecting any particular area element
dA given that we pick a point in the shadow is

P��dA�the point is in the shadow�

=
dA�cos ��

�
shadow

dx dy

=
dA�cos ��
Ashadow

. �29�

Note that Ashadow depends on the choice of great disk, so this
conditional probability does not pick area elements with
equal weight. However, the probability of picking a point in
the shadow is just Ashadow /Agreat disk. Putting this together we
see that P�dA�=dA�cos �� /Agreat disk. Integrating over all di-
rections yields a flat distribution. Finally, if there are multiple
leaves of the surface behind one another with respect to a
given direction of incident light, randomly selecting from
among them and multiple placeholders, as described above,
guarantees that no patch is penalized or rewarded for its po-
sition relative to distant pieces of the surface.

B. Plumber’s nightmare

The simplest triply periodic minimal surface, and the one
that we consider first, is the Schwarz P-surface, sometimes
referred to as the “Plumber’s nightmare” for the impression
it gives of a never-ending maze of pipe work. This surface
appears in the study of lipid bilayers �41� and liquid crystals
�42�. In lieu of using the exact minimal surface, however, we
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use the trigonometric approximation, as its departure from
minimality affects only the mean curvature, leaving the
Gaussian curvature nearly unchanged. Our approximate
Schwarz P-surface is defined by the following relation:

cos�x� + cos�y� + cos�z� = 0. �30�

Using this level-set approximation, we have used our algo-
rithm to choose points as depicted in Fig. 7. We have
checked our method by projecting these points along an axis
and normalizing by the square root of the metric to see a
uniform density. With this in hand we may now calculate the
pressure using �28�. We lay down N disks of a given size,
one at a time, checking to see if they can be inserted without
overlapping an existing disk. To accept or reject each disk,
we check the distance between points along the surface and
compare this to the disk diameter. The distances between
disk centers along the surface are also estimated in a metric-
free way by taking a small step along the line in R3 connect-
ing the disk centers and finding the plane normal to this line
at the location of the step. We then calculate the curve of
intersection between the P-surface and the plane and find the
point on this curve closest to the initial disk center. Tabulat-
ing this distance and then repeating the process with the lo-
cation of the last step as the new initial point from which the
next line in R3 is drawn completes the algorithm. Armed
with an unambiguous state acceptance criterion, we have an
avenue to calculate J���; however, our relevant control pa-
rameter is N. So we instead write

J�N� =
V2

NTv
�P�N� − NT/V� , �31�

using �=Nv /V. Isolating a dimensionless pressure P̃
= P�N�V /T allows us to wash out the hard-core system’s in-
sensitivity to the temperature and the overall scale invari-
ance, leaving

P̃ = N�1 +
v
V

J�N�� . �32�

The dimensionless pressure calculated in this way is shown
in Fig. 7 as a function of N. Notice that for all considered
disk sizes, the pressure shows little deviation from an ideal

gas state �P̃=N� until near the divergence. This stands in
excellent agreement with our predictions from free-area
theory and meshes well with the observations made on hard-
core systems in general by Kamien and Liu �40�.

C. Chaos Carolinensis and the Schwarz D-surface

Another triply periodic minimal surface of interest is the
Schwarz D-surface, or diamond surface. Lipid bilayer and
liquid-crystalline systems also both exhibit this surface,
though it appears in a more surprising context as well—
biology. When the amoeba Chaos Carolinensis is deprived of
food, its mitochondrial membrane transitions from an amor-
phous, unpatterned state to a D-surface, possibly to optimize
its surface-to-volume ratio while cannibalizing its own mem-
brane phospholipids for energy �20�. We again choose to use
the trigonometric approximation; this time the defining rela-
tion is given by

cos�x − y�cos�z� + sin�x + y�sin�z� = 0. �33�

As before, we generate points on this surface �see Fig. 8�,
and again we calculate the dimensionless pressure. For the
full range of considered disk sizes there is little deviation
from the ideal gas until near the divergence, similar to the
P-surface, as shown in Fig. 8. Perhaps this is not surprising,
as the fundamental cell of the P- and D-surfaces are made of
the same local pieces patched together in different ways.
Thus the purely local interactions are likely insensitive to
this longer-range structure, leaving open the possibility that
interactions on the scale of the fundamental cells might be
sensitive to the changed topology.
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FIG. 7. �Color online� Dimensionless pressure as a function of
N for disks of various sizes residing in the P-surface. The disk
diameters range from 0.05 to 0.5 in units where the repeat length of
the P-surface cell is 2�. Warmer colors correspond to smaller disks.
A subset of the random points used is shown in the upper left
corner.
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FIG. 8. �Color online� Dimensionless pressure as a function of
N for disks of various sizes residing in the D-surface. The disk
diameters range from 0.05 to 0.5 in units where the repeat length of
the D-surface cell is 2�. Warmer colors correspond to smaller disks.
A subset of the random points used is shown in the upper left
corner.
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VII. DISCUSSION

In summary, we have constructed a one-parameter, mono-
disperse, two-dimensional system with hard-core repulsions
by introducing negative background curvature to frustrate
local close packing. This suppresses crystallization and
brings the qualitative features of the system more in line with
the frustrated three-dimensional flat case than with the un-
frustrated two-dimensional system. We presented theoretical
models of the system both at low and high density, with the
Virial expansion and the enumeration of crystalline states
along with a free-area theory based around these crystal end
points. We simulated the system in a periodic piece of H2

and compared these results with our theory and with the
well-known flat-space systems. In all cases, our results are
qualitatively in line with the known behaviors in the flat
systems, allowing us to conclude that this system will serve
as a viable model for physical jamming problems that enjoys
important advantages over the standard models in current
use. In particular, our model has a vastly more manageable
parameter space.

In addition to finding use as a model system for three-
dimensional amorphous solids, our work may also be taken
at face value as a direct investigation of two-dimensional
systems in a curved background. We numerically analyzed
such a system on a physically realizable curved surface with
nonconstant negative curvature, laying the groundwork for
future experimental work on triply periodic membranes and
the like.

We emphasize, however, that these are only the first steps
to a rich geometric framework that may serve as a promising
alternative to poly- and bidisperse systems of hard or soft
disks. Technological advances will allow a clean look at the
system as the curvature is turned off and will make higher
Virial coefficients attainable. More complicated particle
shapes and interactions will allow a complete modeling of
submicron scale packings constrained to curved membranes,
as exist in lipids and diblock copolymers and abound in bi-
ology. In addition, it is worth considering H2 and the delicate
balancing of factors that allow the thermodynamic limit to be
trivially sensible in flat space and difficult to grasp anywhere
else.
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APPENDIX: CLASSICAL NON-EUCLIDEAN GEOMETRY

Here we review some properties of H2 and the well-
known Poincaré model, and collect some useful classical
identities and theorems on uniform curved geometry in gen-
eral.

1. Poincaré disk model: Metric and distance

We employ the Poincaré disk model of H2, popularized by
Escher �43�, which conformally maps the hyperbolic plane
with curvature K to the disk of radius �−K−1 on R2. Using
the coordinates �x ,y�, the metric is �18�

ds2 =
4�dx2 + dy2�

�1 + K�x2 + y2��2 , �A1�

where x2+y2�−1 /K.
Geodesics in this model are arcs of circles which intersect

the bounding circle normally; circles in the hyperbolic plane
remain circles in this model, but their coordinate centers and
radii vary: shifting outward from the apparent center and
shrinking far from the origin, respectively. The radius of cur-
vature sets a length scale and, consequently, any system on
H2 is manifestly not scale invariant.

In addition, it is useful to understand that the Poincaré
disk model arises via stereographic projection �44� in the
same way as spherical mappings and, in particular, maps of
the Earth. Define the following quadratic form: Q�x�=−x2

−y2+z2. Then the collection of points with norm 1 with re-
spect to this quadratic form define a two-sheeted hyperbo-
loid. We carry out the stereographic projection by mapping
points on the sheet at positive z onto the unit disk in the x-y
plane via the collection of lines passing through the point
�0,0 ,−1�. Given a point in the unit disk, �ux ,uy� we now
have the map to the hyperboloid:

�ux,uy� → � 2ux

1 − u2 ,
2uy

1 − u2 ,
1 + u2

1 − u2� , �A2�

where u is the length of the vector in the x-y plane. The
distance function for the Poincaré disk model is then given
by the symmetric bilinear form related to Q by polarization:

cosh�d�ũ, ṽ�� = �u,v� =
1

2
�Q�u + v� − Q�u� − Q�v�� ,

�A3�

where we have denoted the two-dimensional vectors in the
disk by ũ and ṽ and their images on the hyperboloid in R3 by
u and v. Substituting the expressions for the images in terms
of the model vectors and simplifying yields the distance
function for the Poincaré disk model with K=−1:

d�ũ, ṽ� = cosh−11 + 2
�ũ − ṽ�2

�1 − ũ2��1 − ṽ2�
� . �A4�

Were we to write ũ= ṽ+dũ, then we would find

ds2 = �d�ũ, ṽ��2 = �cosh−11 + 2
dũ2

�1 − ũ2��1 − ṽ2���2

�
4dũ2

�1 − ũ2�2 , �A5�

in agreement with �A1�.

2. Hyperbolic law of cosines

Consider a triangle in the hyperbolic plane with side
lengths a, b, and c and corresponding angles 
, �, and �.
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Call the coordinate vertices A, B, and C. As before, we set
K=−1 in order to simplify the notation. Now, because H2 is
isotropic and homogeneous, we may assume that vertex A
sits at the origin of the Poincaré disk model. The distance
function �A4� then gives the following relations:

C =�cosh�b� − 1

cosh�b� + 1
and B =�cosh�c� − 1

cosh�c� + 1
. �A6�

At the same time, applying the distance function in a similar
way to the side of the triangle without a vertex on the origin
gives

cosh�a� = 1 + 2
�B − C�2

�1 − B2��1 − C2�
. �A7�

But note that A, B, and C define a Euclidean, coordinate
triangle as well. We apply the traditional law of cosines here:

�B − C�2 = B2 + C2 − 2BC cos�
� . �A8�

Substituting �A6� and �A8� into �A7� eliminates B and C.
Clearing denominators and repeated application of the hyper-
bolic trigonometric identities yields the hyperbolic law of
cosines:

cosh�a� = cosh�b�cosh�c� − sinh�b�sinh�c�cos�
� .

�A9�

Alternatively, there is a dual form of this relation that one
can obtain from the cyclic permutations of the hyperbolic
law of cosines together with more trigonometric identities
�hyperbolic or otherwise�:

cos�
� = cos���cos��� + sin���sin���cosh�a� . �A10�

3. Area within a given distance of a geodesic

Consider a quadrangular region in the hyperbolic plane
bordered on one side by a geodesic of length d and having
geodesics of length r as the sides adjacent to the first. Finally,
define the fourth side as the curve of constant geodesic cur-
vature such that each point along it is a distance r from the
length-d geodesic �45�. Recall the geodesic deviation equa-
tion

�2�

�s2 = − K� , �A11�

where ��s� is the separation between two geodesics as a
function of the arclength parameter along each, s. Consider
the two sides of length r in the context of this equation. The
initial conditions are ��0�=d and ��

�s �0�=0 because the initial
curve of length d is itself a geodesic and so first variations of
its length vanish. We find ��s�=d cosh��−Ks�. The area en-
closed by our strip must then be given by

A = �
0

r

ds ��s� �A12�

or

A =
d sinh�r�− K�

�− K
, �A13�

as required.
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